SIMILAR SOLUTIONS OF THE MAGNETOHYDRODYNAMIC EQUATIONS
WITH FINITE GAS CONDUCTIVITY

A. N. Cherepanov

We examine the one-dimensional nonstationary motion of a conducting gas in an external magnetic
field oriented normal to the moving medium. It is assumed that the gas is ideal, and that viscosity and
heat conductivity are absent. Then, in magnetohydrodynamic approximation, the system of equations
describing the motion of a conducting gas in a magnetic field has the form
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The denotations, here, are the generally accepted ones. In the plane~symmetrical case @ =0, while
in the case of cylindrical symmetry, a=1.

Furthermore, we assume that the conductivity of the gas depends only on temperature and is defined
by the relation

¢=CTI" (n>0) ©.2)

If the motion of the gas is accompanied by the development of a shock wave, then the conditions at the
shock wave front must be added to the system (0.1). Assuming that the shock wave is a gas dynamic one,
we write
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Subscript 1 refers to physical quantities in front of the shock wave, subscript 2 to those behind the
shock wave, D is the velocity of the shock wave, and v the ratio of specific heats.

We determine a transformation which does not change the form of the Eqs. (0.1) and (0.3). Let
r=31r’t=82t,H=£sH,U=B4U,P=85P,p=esp (0. 4)

where g, &, &, &, &, g are certain constant coefficients which define the transformation of the corre-
sponding variables for which the form of the Egs. (0.1), (0.3) does not change.
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By substituting (0. 4) into (0.1), we get the following two-parameter group of transformations, which
holds also for the relations (0.3):

2(n+1)] =1 2 (m+ 1 ) —2
r=ear, t=elt, H=eg"H, o=y P=e™P, p=g = MVp, T=g ™1 T

According to |1}, similarity solutions of system (0.1} will have the form
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HeHy™ (), v=oor ™ u(E), T=Te? @@, p=per = 7 yE (0.5)

The similarity variable is

2n-4-1 1 —n
E=Corji20HD | ¢y = g2 2Dy (0.6)

v

Here, Hy, vy, 1, and T, are certain dimensional constants.

The dimensionless functions h(¢), u{£), and so on, are defined by a system of ordinary differential
equations which derive from (0.1) with consideration of (0.5)
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Here, the following notations are introduced for the dimensionless parameters:

2B (n—1) 2(n-+1) 1
A N=—2,771 . Ni=7377

A=4nCTo v, B==H?8nP;,, K=
Furthermore, T'o=C;2N/ R, vy = Co™N, pi=P, ¥ . The prime denotes differentiation with respect to &,

In this way, the solution of the system of partial differential equations (0.1) reduces to that of a non-
linear system of ordinary fifth~order differential equations. For individual values of the parameter m, we
present some particular solutions of system (0.7) which have the form

h=CE, u=C B, y= 03551 8 = C,t° (0.8)

For m=—N{1+a), =2

N
v=(+aN, p=N, d=Tog [l —2N)a—1], o= @+3—2N)

C,=1, while Cy, Cy, and C4 are arbitrary constants, By substituting (0.8), with consideration of (0.6) and
the latter relations, into (0.5), we get for the physical quantities
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C; and C,; are arbitrary constants.
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Here only C; is an arbitrary constant.

H = HOrt™", p=pCo™P, To=ToCu 2NN, 5 —,’— 0.11)

It should be noted that in solutions of the form (6.9) and (0.10}, the magnetic field is independent of
the coordinate, and is a function only of time.

1. Some Integrals of System (0.7). Tn the case of

_ 142Nito
= P) 1.1)

the order of the system (0. 7) can be lowered by unity by integrating the third equation and substituting the
expression obtained for

O
Vg —u (1.2)

into the remaining three equations (it is assumed that » = NV ).
If, furthermore, Ni==1s(1+4a)(n=(1—a)2(1+a)) is assumed, then the first equation in (0.7) is singly

integrated simultaneously, after which we obtain a system of three first-order differential equations
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Here, 8=2/3+a, while ¥ (¢) is defined by formula (1.2) for N=3+a/2.
For a small hydromagnetic interaction parameter
BA<Z 1 (1.4)

where the influence of the electromagnetic field on the motion of the medium may be neglected, Eq. (1.3) is
integrable in final form if w=2, @ =1 is postulated.

Indeed, by omitting the last term (the assumption (1.4)) in the third equation of system (1.3), and
setting n=2, we get
34a
v g7
BB =C —3——
_— 2
Be 7 (1.5)
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Here, @ may either vanish or be equal to unity. From the second equation in (1.3), for a=1, with
allowance for (1.2), (1.4), (1.5), we get

P — 3BERP 4 2(PE — C)B%u + 28320y + C3fEY) =0

Now, from the first equation in (1.3), we determine h({) (@=1, n=0)

hE =t |~ S et 8R | 2] (o o) B, (] 4]

The arbitrary constants Cj, Cy, C3, C4, and Cy are determined from the boundary conditions.

It is noteworthy that to the condition (1.1), for which the integral (1.2) exists, there corresponds the
case of constant mass in the region of motion @ studied, i.e.,

S pdQ = const
Q

2. Motion of a Conducting Gas in a Magnetic Field under the Action of a Piston. Assume that at a
moment of time t=0, a compressible gas occupies a half-space r>0, and that it is bounded by a plane
{@=0) and by a cylindrical (@=1) infinitely conducting piston which starts to move along the axis r at a
moment of time t=0. I this case, a shock wave, which disturbs the initial distribution of the physical
quantities, will propagate in the gas.

Let us examine the case m=0, n=0. Then the similar solution of system (0.1) will take the form
H=H®), v= 020D uyE), P = P@()
T = Tlt-ll(n-i—l) 0:(8), p= p1t1/("+1))£1(§)

u = §~1((2n+1) u(§), 6 = §—21(2n+1) 0(%), = §2/(2n+1) X(E)

Here, Hy, vy, Py, Ty, and p; are the corresponding dimensional constants.
At the initial moment of time, the distribution of the physical quantities over the r coordinate was
as follows
H=H, v=0, T=7Tg?m, o= py?/en
Let £5 and £, denote the positions of the piston and the shock wave, respectively, in the space of the
similarity variable £.

From the similarity condition of the problem, we obtain the law that governs the motion of the piston,

an-+1
T
o

{(here, and in the following, subscript s denotes the conditions on the piston). The speed of piston motion
is

1

ve= 3 1/ 2(ni)

B
Co

Let us go over to the variable £=£/;, and write the system (0.7), for m=0, in the form

W
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The boundary conditions derive from the relations (0.3) at the shock wave
2 % x—1 2w T
u= %+ 1 Br (1_E)is X':l:%_i_ 1 + Blz(u‘l‘i)]
w4\ % —14 2 /B .
o= (2= ) Sy hmt o Ut
(2.2)

while the conditions on the piston are u, = fuf,¥,#’=0for t={, . The last condition in (2.2), h' {£g)=0, sig-

nifies the absence of diffusion of the magnetic field into an infinitely conducting piston. By chaﬁging the
variables

u=pN w), x=xb, 0=prND

(2.3)
Eq. (2.1) is reduced to the form
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The boundary condition takes the form
Tx—1 2% —1 2 w—1 w1 2%
b=t =377+ m} v = [m“m}[wi JFBIZ(HU1
2 %
h=1 for w:—m(i—ﬁ;), y=0 for w=1 (2.5)
The conditions on the piston, w=1, define the juantity
Es
= (2.6)

The point w =1 (surface of the piston) is a singular point. We seek the asymptotic expansions of the
functions y and z near w=1 in the form

x = CiF’(w), 2 = C:Fr*(w)

Then, considering that for w=1, y~= 0, from system (2.4) we get

Nita 0t —1) (N — ) + 2V
=N o b= N
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The expansion coefficients C; and C, are determined from the condition for sewing together the
numerical and asymptotic solutions.

The system (2.4) with the boundary conditions (2.5} lends itself to solution by numerical methods.
Since the quantity p. = &"/#¥ is contained explicitly in the boundary conditions (2.5), the value of the
parameter £, may be assumed to be given. Then the constant &4 will derive from (2.6).

Let us clarify the meaning of the dimensionless parameters A and B contained in system (2.1) (or Ay,
B, in (2.4)). To this end, we postulate that

H 2
Ry, = 4nGwers, D= &T;;,Z 2.7)

where R, is the magnetic Reynolds number, oy, v,, and D; are the values of the conductivity, velocity,
and the ratio of magnetic pressure to the static pressure of the gas in the shock wave, respectively, while
T is the distance from the piston surface to the shock wave front. Then, considering the relations (0.5),
for £=f;, r=ry, from (2.7) we get R, = 40"&,) z (§),, Di= B/y(E,) 8¢y . Here, the quantities u(&), x(&e) 0%y
are defined by the first three equalities in (2. 2).

Numerical computations were performed on an M-20 computer for the case of a strong shock wave.
The boundary conditions in this case have the form

1 2(x—1)
£=1, X=3_"7. *= =L 1)
h=1 for w= y=0 for w=1

w1’

The latter no longer depend on £, and therefore, to solve the problem, one may first set the value
of £ (position of the piston) and then determine the parameter £, (position of the shock wave) from (2.6).

The figuré shows plots of 6:(Z)/6(1) m (D) / () vs ¢ for a gas moving in a magnetic field (solid lines)
and in the absence of a magnetic field (dashedline) for « =0, x =53, n =3/, £, =1, Bi = 1 (D1 = 0.44), 41 = 5(Ry, = 0.3)
and 4: ="16.6(R,, = 1). . Here, it is kept in mind that for a strong shock wave

20 (o )P e —1
Bon= s Ao =g B

It is noteworthy that the presence of a magnetic field leads to a deceleration of the shock wave and
to a decrease in the gas velocity as compared to the motion of a gas in the absence of a magnetic field.
The value of the decleration increases with increasing interaction parameter S=D;.Ry,. Because of the
finite conductivity of the gas, there develops Joule dissipation in the medium, on account of which heat is
supplied to the particles of the medium.

It should be noted that the class of similar solutions obtained also permits the formulation of the
problem of the motion of a conducting gas in a magnetic field in the presence of instantaneous energy re-
lease in the center of symmetry. To this end, it is necessary to set m = — 3(1+ a) . A similar problem
was examined in [2] for the case of a strong shock wave.

In conclusion, we present another class of similar solutions characterized by an exponential time
dependence (in connection with problems in gas dynamics [3, 4]). It is assumed that the gas conductivity
depends both on temperature and density, and that it is defined by the formula o= ¢r"n , where n and!
are certain numbers. Then the similar solution of the system (0.1) has the form

H = Hoe "™ gy s peftu (5)
Pe* opt Py
T o= T e%k ) (E)’ p= W e(md—l)ktx (E)

P— Poe(m+3) kt G (E)

where, as above, m is an arbitrary dimensionless parameter, and k a dimensional constant with the
dimensionality sec=!., The similarity variable is £ = E/vpre*! , Hy, v, and Pjare the corresponding dimen-
sional constants.
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8,% ‘\\ P The dimensionless functions h{£), u(¢), and so on, are defined
\\ S\in/a,,; by a system of ordinary differential equations
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/7 g From the similarity conditions for the constants n, I, and m, we
27 08 0.9 ' have the following relation: 2+2n+I (m +1) =0,

Here, it is necessary to require thatl #0, m=—1, and n= 0.

As in the case of a power-law similarity, examined above, the class of exponential similar solutions
we have given permits formulation of the problem of the motion of a conducting gas in a magnetic field
under the action of a piston that moves according to an exponential law, while for m=—4 —a, it permits
formulation of the problem of the motion of a conducting medium in the presence of an instantaneous energy
release in the center of symmetry.

The author is indebted to L. A. Zaklyaz'minskii and B. I. Yakovlev for useful advice and their at-
tention to the work.
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